TH Fox School of Business
 TEMPLE UNIVERSITY ${ }^{\text {© }}$

2022 OWLympiad Sample Questions

Rules:

- This is a team exam.
- It is a multiple-choice exam.
- Teams will have 50 minutes to complete the exam.
- No calculators may be used

1. Find the derivative of $f(x)=10 \sqrt[5]{x^{3}}-\sqrt{x^{7}}+6 \sqrt[3]{x^{8}}-3$, with respect to x.
A. $6 x^{\frac{2}{5}}-\frac{7}{2} x^{\frac{5}{2}}+16 x^{\frac{3}{5}}$
B. $10 x^{\frac{3}{5}}-x^{\frac{7}{2}}+6 x^{\frac{8}{3}}-3$
C. $6 x^{-\frac{2}{5}}-\frac{7}{2} x^{\frac{5}{2}}+16 x^{\frac{5}{3}}$
D. $6 x^{\frac{2}{5}}-\frac{7}{2} x^{-\frac{5}{2}}+16 x^{\frac{5}{3}}$
2. In $\triangle A B C, \angle A B C=50^{\circ}, \angle A C B=80^{\circ}$. $A B=B D, A C=C E$. Find $\angle D A E$.
A. 100°
B. 105°
C. 115°
D. 130°

3. Vandana is giving the weather report. She predicts that there is a 44% chance it will rain on both Monday and Tuesday. Given that it rains on Monday, there is a 72% chance it will rain on Tuesday. What is the probability that it will rain on Monday?
A. $\frac{1}{6}$
B. $\frac{7}{8}$
C. $\frac{11}{18}$
D. $\frac{13}{18}$
4. Given $\left[\begin{array}{ccc}0 & 3 & 0 \\ 4 & 7 & 5 \\ 12 & 21 & 15\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}8 \\ 11 \\ 33\end{array}\right]$, solve for x, y and z .
A. $x=0, y=7, z=15$
B. $x=8, y=11, z=23$
C. No solution
D. More than one solution
5. Given that $a+b=5$ and $a b=2$, find the exact value of $a^{3}+b^{3}$.
A. 90
B. 95
C. 100
D. 105
6. A theatre manager is trying to decide which movie genres are best for his theatre, so he looks at the sales data from the past year.

49\% saw comedy,
64\% saw drama,
43\% saw horror,
24% saw both drama and horror,
26\% saw both drama and comedy,
13% saw both comedy and horror, and
7% saw all three.

What percentage saw drama exclusively?
A. 7
B. 13
C. 17
D. 21
7. Simplify: $2 \ln (y)+\frac{\ln x \log _{x} x}{\ln e-\ln 1}$.
A. $\ln \left(x y^{2}\right)$
B. $\ln \left(y^{2}+x\right)$
C. $\ln \left(y^{2}\right)+\log _{x} x$
D. $\ln (2 y+x)$
8. $\frac{\sin x}{1-\sin x}-\frac{\sin x}{1+\sin x}$ can also be written as:
A. $\frac{2 \sin x}{1+\sin x}$
B. $\frac{2 \sin x}{1-\sin x}$
C. $-2 \tan x$
D. $2 \tan ^{2} x$
9. Find the line perpendicular to $7 x+11 y=25$ that goes through the point $(2,1)$.
A. $y=\frac{11}{7} x+\frac{15}{7}$
B. $y=\frac{7}{11} x-\frac{7}{15}$
C. $y=-\frac{11}{7} x+\frac{15}{7}$
D. $y=\frac{11}{7} x-\frac{15}{7}$
10. (i) From the diagram below, what are the values of a and b ?
(ii) What is the period of the graph of $y=a+b \sin (2 x)$, where $a=0$ and $b=3$? In what interval does it lie?

A. $a=1 \quad b=2$
period: $2 \pi \quad[-3,3]$
C. $a=-1 \quad b=3$ period: π
B. $a=-1 \quad b=3$ period: $2 \pi \quad[-2,2]$
D. $a=1 \quad b=2$ period: π
11. Which of the following describes the relationship between x and y as shown in the pairs of numbers in the table below?

x	y
3	28
4	65
5	126
6	217
7	344

A. $y=9 x+1$
B. $y=x^{2}+x^{2}$
C. $y=x^{4}+x^{-1}$
D. $y=x^{3}+1$
12.

X	10	20	25	30	40	45
Y	5	15	20	25	35	40

According to the table above, what's the relationship between the mean of X and the mean of Y ? What about variance?
A. mean $(X)>m e a n(Y)$; variance $(X)>$ variance (Y).
B. mean $(X)=$ mean (Y); variance $(X)>$ variance (Y).
C. mean $(X)=$ mean (Y); variance $(X)=$ variance (Y).
D. mean $(\mathrm{X})>$ mean (Y); variance $(\mathrm{X})=$ variance (Y).
13. If the product of 6 integers is negative, at most, how many of the integers can be negative?
A. 2
B. 3
C. 4
D. 5
14. In circle Q, find the measure of inscribed <JLK

A. 20
B. 40
C. 60
D. 80
15. Find the domain for $f(x)=\sqrt{\frac{x^{2}-5 x}{x^{2}-9}}$
A. $\quad(\infty, 3) \cup(0,3) \cup[5, \infty)$
B. $(\infty,-3) \cup[0,3) \cup(5, \infty)$
C. $(-\infty,-3) \cup[0,3) \cup[5, \infty)$
D. $(-\infty,-3) \cup[0,3) \cup(5, \infty)$

